26
True or False ? Justify the answer with a proof or a counterexample.
1. Every function has a derivative.
Solution
False. Counterexample:
2. A continuous function has a continuous derivative.
3. A continuous function has a derivative.
Solution
False. Counterexample:
4. If a function is differentiable, it is continuous.
Use the limit definition of the derivative to exactly evaluate the derivative.
5.
Solution
6.
7.
Solution
8.
Find the first derivative of the following functions.
9.
Solution
10.
11.
Solution
12.
13.
Solution
14.
15.
Solution
16.
17.
Solution
18.
19.
Solution
20.
21.
Solution
22.
23.
Solution
24.
25.
Solution
26.
27.
Solution
28.
29.
Solution
30.
Find the following derivatives of various orders.
31. First derivative of
Solution
32. Third derivative of
33. Second derivative of
Solution
34. The 27th derivative of
35. The 38th derivative of
Solution
Find the equation of the tangent line to the following equations at the specified point.
36. at
37. at
Solution
38. at the point
39. at
Solution
Determine the following limits.
40.
41.
Solution
42.
43.
Solution
Draw the derivative for the following graphs.
Solution
Answer the following questions.
46. A particle moves on a vertical line so that its coordinate at time is .
a) Find the velocity function, .
b) Find the acceleration function, .
c) When is the particle moving upward? When is the particle moving downward?
47. A ball is thrown vertically in the air with an upward velocity of 80 ft per second. Its height after seconds is .
a) What is the maximum height reached by the ball? How many seconds does it take for the ball to reach its maximum height?
b) Find the velocity function, .
c) What is the velocity of the ball at ?
d) What is the velocity of the ball ?
e) How long does it take for the ball to reach the ground?
Solution
a) 160 ft; 4 seconds
b)
c) ft/s (upward)
d) ft/s (downward)
e) so seconds
The following questions concern the water level in Ocean City, New Jersey, in January, which can be approximated by , where is measured in hours after midnight, and the height is measured in feet.
48. Find and graph the derivative. What is the physical meaning?
49. Find . What is the physical meaning of this value?
Solution
. At 3 a.m. the tide is decreasing at a rate of 1.514 ft/hr.
The following questions consider the wind speeds of Hurricane Katrina, which affected New Orleans, Louisiana, in August 2005. The data are displayed in a table.
Hours after Midnight, August 26 | Wind Speed (mph) |
---|---|
1 | 45 |
5 | 75 |
11 | 100 |
29 | 115 |
49 | 145 |
58 | 175 |
73 | 155 |
81 | 125 |
85 | 95 |
107 | 35 |
50. Using the table, estimate the derivative of the wind speed at hour 39. What is the physical meaning?
51. Estimate the derivative of the wind speed at hour 83. What is the physical meaning?
Solution
-7.5. The wind speed is decreasing at a rate of 7.5 mph/hr